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Abstract. Nitrous oxide is a potent greenhouse gas (GHG) and ozone-depleting substance, whose atmospheric
abundance has risen throughout the contemporary record. In this work, we carry out the first global hierarchical
Bayesian inversion to solve for nitrous oxide emissions, which includes prior emissions with truncated Gaussian
distributions and Gaussian model errors, in order to examine the drivers of the atmospheric surface growth rate.
We show that both emissions and climatic variability are key drivers of variations in the surface nitrous oxide
growth rate between 2011 and 2020. We derive increasing global nitrous oxide emissions, which are mainly
driven by emissions between 0 and 30◦ N, with the highest emissions recorded in 2020. Our mean global total
emissions for 2011–2020 of 17.2 (16.7–17.7 at the 95 % credible intervals) Tg N yr−1, comprising of 12.0 (11.2–
12.8) Tg N yr−1 from land and 5.2 (4.5–5.9) Tg N yr−1 from ocean, agrees well with previous studies, but we
find that emissions are poorly constrained for some regions of the world, particularly for the oceans. The prior
emissions used in this and other previous work exhibit a seasonal cycle in the extra-tropical Northern Hemisphere
that is out of phase with the posterior solution, and there is a substantial zonal redistribution of emissions from the
prior to the posterior. Correctly characterizing the uncertainties in the system, for example in the prior emission
fields, is crucial for deriving posterior fluxes that are consistent with observations. In this hierarchical inversion,
the model-measurement discrepancy and the prior flux uncertainty are informed by the data, rather than solely
through “expert judgement”. We show cases where this framework provides different plausible adjustments to
the prior fluxes compared to inversions using widely adopted, fixed uncertainty constraints.

Published by Copernicus Publications on behalf of the European Geosciences Union.



12946 A. C. Stell et al.: Modelling the growth of atmospheric nitrous oxide using a hierarchical inversion

1 Introduction

Nitrous oxide (N2O) is an important greenhouse gas (GHG)
that contributes substantially to the increase in radiative forc-
ing of climate by anthropogenic activities (Myhre et al.,
2013; Etminan et al., 2016). Additionally, nitrous oxide is
currently the largest contributor to stratospheric ozone deple-
tion, when considering ozone depletion potential-weighted
anthropogenic emissions (Ravishankara et al., 2009). The
amount of nitrous oxide in the atmosphere has risen from
about 290 ppb in 1940 to 333 ppb in 2020 (Park et al., 2012;
Prinn et al., 2000, 2018; Dlugokencky et al., 2021). This
rise is predominantly due to increasing agricultural emis-
sions (Davidson, 2009; Syakila and Kroeze, 2011; Tian et al.,
2019). The natural sources of nitrous oxide are natural soils,
biomass burning, and oceans, which are all highly uncertain
in magnitude and distribution (e.g. Ciais et al., 2013). Ni-
trous oxide is only slowly removed from the atmosphere by
photolysis and reaction with excited oxygen atoms (O(1D))
in the stratosphere, resulting in a lifetime of about 120 years
(Ko et al., 2013; Prather et al., 2015).

The atmospheric abundance of nitrous oxide is monitored
by several laboratories, and in this work, we use measure-
ments taken by the National Oceanic and Atmospheric Ad-
ministration (NOAA; Dlugokencky et al., 2021; Sweeney
et al., 2021) and the Advanced Global Atmospheric Gases
Experiment (AGAGE; Prinn et al., 2000, 2018). Figure 1
shows the atmospheric surface nitrous oxide growth rate
from 2011 to 2020 based on these observations. From mid-
2017 until 2019, the abundance of nitrous oxide was grow-
ing fastest in the Southern Hemisphere. Since 2000, this
is only the second extended time period where the surface
growth rate was led by the Southern Hemisphere. This pat-
tern may be explained by increasing emissions within this
region (Thompson et al., 2019; Tian et al., 2020; Patra et al.,
2022), or by climatic variability, (e.g. the quasi-biennial os-
cillation (QBO)), which have been shown to be key drivers of
the growth rate of surface nitrous oxide mole fraction (Ray
et al., 2020; Ruiz et al., 2021).

Previous global nitrous oxide inversions that estimated
emissions from atmospheric mole fraction data include Wells
et al. (2015, 2018), Thompson et al. (2019), Tian et al.
(2020), and Patra et al. (2022). The latter three investigated
decadal-scale emissions trends, finding that global nitrous
oxide emissions have risen over the last 2 decades, with
Thompson et al. (2019) attributing this rise to agricultural
soils as a result of a non-linear relationship between nitrogen
inputs and nitrous oxide emissions.

The agreement between previous inversion studies demon-
strates that global total nitrous oxide emissions are well con-
strained by observations at around 17 Tg N yr−1. However,
there is considerable variation on the regional scale. For ex-
ample, one inversion setup in Thompson et al. (2019) derives
oceanic emissions of 7.2 Tg N yr−1 over 1998–2016, whereas
Patra et al. (2022) derives oceanic emissions of 2.8 Tg N yr−1

Figure 1. The observed atmospheric surface nitrous oxide growth
rate derived from the AGAGE and NOAA networks for each month
of 2011–2020 globally (black line) and in four latitude bands
(coloured lines). The observations included are detailed in Sect. 2.1,
and are combined into latitude band and global totals by weighting
by the cosine of the latitude. The surface growth rate is calculated
as the difference in the mole fraction between the month in the dis-
played year and the year before, and has been smoothed using a
LOESS (locally weighted smoothing) algorithm with a span of 0.3.

over 2000–2019. The discrepancy is also seen in developed
land regions. For example, Wells et al. (2018) derives very
different emissions for Europe (0.43–1.05 Tg N yr−1), de-
pending on the inversion setup. These discrepancies suggest
that new measurement or modelling approaches are required
to constrain fluxes at the regional scale in global inversions.

The limited ability of atmospheric observations within
global inversions to partition emissions at the regional scale
means that the “bottom-up” inventory and process-modelling
estimates used as prior estimates for the “top-down” inver-
sion methods could strongly influence the inversion results.
The majority of nitrous oxide emissions come from poorly
understood microbial processes in the soil (Butterbach-Bahl
et al., 2013), which are controlled by temperature, moisture,
nitrogen inputs, and other environmental factors. Most of
the remaining emissions are oceanic, and are also derived
from microbial processes. Marine nitrous oxide emissions
additionally require knowledge of air–sea exchange (Nevi-
son et al., 1995; Manizza et al., 2012; Yang et al., 2020).
The complex and poorly understood nature of nitrous ox-
ide emissions means that uncertainties in the prior estimates
are difficult to characterize. For example, the posterior solu-
tions of several previous inversions have substantially altered
seasonal cycles compared to bottom-up studies (e.g. Thomp-
son et al., 2014a; Nevison et al., 2018; Wells et al., 2018).
This discrepancy is thought to be due to missing freeze–
thaw processes or fertilizer-application timings in process
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models (Wagner-Riddle et al., 2017; Nevison et al., 2018;
Wells et al., 2018), or inaccuracies in top-down estimates due
to model transport (Nevison et al., 2007; Thompson et al.,
2014a).

Here, for the first time, we use a hierarchical Bayesian
global inversion framework to estimate nitrous oxide emis-
sions from 2011 to 2020. Previous studies investigating ni-
trous oxide have used either an analytical Bayesian inversion
framework (e.g. Thompson et al., 2019; Tian et al., 2020;
Patra et al., 2022) or a four-dimensional variational (4D-Var)
method (e.g. Wells et al., 2015, 2018; Thompson et al., 2019;
Tian et al., 2020). Our hierarchical Bayesian inversion frame-
work is advantageous as both analytical and 4D-Var atmo-
spheric inversions require specification of uncertainties on
the prior fluxes and model error, both often assumed to be
Gaussian, which are determined by “expert judgement”. In-
correctly specified uncertainties can significantly impact the
posterior solution (Ganesan et al., 2014). The hierarchical in-
version addresses this by using hyper-parameters to explore
a range of possible prior uncertainties. Additionally, using
Markov chain Monte Carlo (MCMC) allows the use of non-
Gaussian flux distributions, which cannot easily be imple-
mented in analytical inversion systems. These distributions
are useful for gases such as nitrous oxide, as we expect land
emissions to be predominantly positive. In this work, we in-
vestigate nitrous oxide emissions on a global and zonal scale
using the hierarchical inversion. To help examine departures
from previous inversions and explore the benefits of the hier-
archical framework, we compare it to results from an analyt-
ical inversion.

2 Methods

2.1 Atmospheric observations

The atmospheric observations used in this work are surface
measurements from 45 stations which are listed in Table 1
and mapped in Fig. 2. These observations were made by the
Advanced Global Atmospheric Gases Experiment (AGAGE;
Prinn et al., 2000, 2018) and as part of two National Oceanic
and Atmospheric Administration (NOAA) programmes: the
Halocarbons and other Atmospheric Trace Species (HATS)
and the Carbon Cycle Greenhouse Gases (CCGG; Dlugo-
kencky et al., 2021). The NOAA stations were selected based
on two criteria: (i) they have nitrous oxide records for at least
6 of the years in the target time period (2010–2020) to pre-
vent temporal inconsistencies in the inferred fluxes as sta-
tions come in and out of service, (ii) they are not heavily
influenced by local nitrous oxide sources, which are deter-
mined by visual comparison of the GEOS-Chem base run
(Sect. 2.2) and the observations. This filtering is necessary
because the model resolution is too coarse to simulate local
effects. Whilst this filtering was somewhat subjective, our
results were not substantially changed if we included addi-
tional sites that appeared to experience moderate regional in-

fluence. High-frequency AGAGE data are similarly filtered
to only include samples representative of background air. The
background air samples are identified using the Lagrangian
model, NAME (Numerical Atmospheric dispersion Mod-
elling Environment; Jones et al., 2007), as samples where the
proportion of air from the surrounding grid cells, populated
areas, and the upper troposphere is low (Arnold et al., 2018).

The NOAA and AGAGE networks are on different cal-
ibration scales. To prevent this from affecting the inver-
sion, we harmonize the networks by rescaling the AGAGE
data using the method of Wells et al. (2018). This is done
by using measurements from locations where both AGAGE
and NOAA data are available (Cape Grim, Mace Head,
Ragged Point, Tutuila, and Trinidad Head). The AGAGE and
NOAA measurements made within 15 min of each other are
matched, and the average ratio between the matched AGAGE
and NOAA measurements (AGAGE measurements /NOAA
measurements) was found to be 1.0015. This ratio is used
to rescale the AGAGE data. A single ratio was used for the
whole time period as there was no evidence of a trend in this
value over time.

Following the calibration adjustment, we compute
monthly averages of the raw measurements for each station,
along with the standard deviation of the measurements in that
month. The monthly averages are used as observations for the
inversion, and the standard deviations are used as the mea-
surement error component of the total error budget for each
observation. This is a conservative estimate of the measure-
ment error that allows for the possibility of very high corre-
lation between measurements within each month. If there is
only one sample at a station for a month, or the calculated
standard deviation is smaller than the median instrumental
uncertainty reported by the data provider over all stations that
month, then the median reported instrumental uncertainty is
used. This method results in median measurement uncertain-
ties of 0.26 ppb. The other component of the total error bud-
get for each observation is model error, which we discuss in
Sect. 2.3.3.

2.2 Nitrous oxide prior emissions and model simulations

We run model simulations to link the observations of nitrous
oxide mole fractions to emissions. The simulations use the
GEOS-Chem chemical transport model (http://acmg.seas.
harvard.edu/geos/, last access: 28 May 2021), version 13.0.0,
run with a horizontal resolution of 4◦× 5◦ and 72 vertical
levels from the surface to 0.01 hPa. The time steps are 10 min
for transport and 20 min for chemistry and emissions, and use
MERRA-2 meteorology (Gelaro et al., 2017).

The prior emissions we use are a combination of anthro-
pogenic emissions from EDGARv5.0 (Crippa et al., 2019),
natural soil emissions from Saikawa et al. (2013), oceanic
emissions using output from the ocean model ECCO2-Dar-
win (Ganesan et al., 2020), and biomass burning emissions
from GFED4 (Randerson et al., 2017). The sources and
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Table 1. Surface stations included in the inversion. Locations of the stations are shown in Fig. 2.

Station Network Station information

ALT NOAA Nunavut, Canada
ASC NOAA Ascension Island, United Kingdom
ASK NOAA Assekrem, Algeria
AZR NOAA Terceira Island, Azores, Portugal
BAO NOAA Boulder Atmospheric Observatory, Colorado, United States
BHD NOAA Baring Head Station, New Zealand
BMW NOAA Tudor Hill, Bermuda, United Kingdom
BRW NOAA Barrow Atmospheric Baseline Observatory, Alaska, United States
CBA NOAA Cold Bay, Alaska, United States
CGO NOAA and AGAGE Cape Grim, Tasmania, Australia
CHR NOAA Christmas Island, Republic of Kiribati
CPT NOAA Cape Point, South Africa
CRV NOAA Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), Alaska, United States
CRZ NOAA Crozet Island, France
DRP NOAA Drake Passage
EIC NOAA Easter Island, Chile
GMI NOAA Guam
HBA NOAA Halley Station, Antarctica, United Kingdom
ICE NOAA Storhofdi, Vestmannaeyjar, Iceland
IZO NOAA Izana, Tenerife, Canary Islands, Spain
KEY NOAA Key Biscayne, Florida, United States
KUM NOAA Cape Kumukahi, Hawaii, United States
LLN NOAA Lulin, Taiwan
LMP NOAA Lampedusa, Italy
MBO NOAA Mt. Bachelor Observatory, Oregon, United States
MEX NOAA High Altitude Global Climate Observation Center, Mexico
MHD NOAA and AGAGE Mace Head, County Galway, Ireland
MID NOAA Sand Island, Midway, United States
MLO NOAA Mauna Loa, Hawaii, United States
MWO NOAA Mt. Wilson Observatory, California, United States
NAT NOAA Farol De Mae Luiza Lighthouse, Brazil
NMB NOAA Gobabeb, Namibia
NWR NOAA Niwot Ridge, Colorado, United States
PSA NOAA Palmer Station, Antarctica, United States
RPB NOAA and AGAGE Ragged Point, Barbados
SEY NOAA Mache Island, Seychelles
SMO NOAA and AGAGE Tutuila, American Samoa
SPO NOAA South Pole, Antarctica, United States
SUM NOAA Summit, Greenland
SYO NOAA Syowa Station, Antarctica, Japan
THD NOAA and AGAGE Trinidad Head, California, United States
TIK NOAA Hydrometeorological Observatory of Tiksi, Russia
USH NOAA Ushuaia, Argentina
UUM NOAA Ulaan Uul, Mongolia
ZEP NOAA Ny-Ålesund, Svalbard, Norway and Sweden

their temporal resolutions are given in Table 2. The emis-
sions from soil, oceans, and biomass burning are turned into
monthly climatologies by taking the average in each calendar
month in the dataset. The stratospheric loss of nitrous oxide
by photolysis and reaction with O(1D) is taken from archived
monthly loss frequencies from the Global Modeling Initiative
(GMI; Rotman et al., 2001).

To derive an initial condition for the nitrous oxide mole
fraction, we run a spin-up simulation for 10 years using re-
peating 2009 emissions and meteorology, starting from an
atmosphere with a constant nitrous oxide mole fraction. The
resulting initial condition field matches surface nitrous ox-
ide observations to within a few ppb, has a zonal and annual
mean latitude–altitude cross section of nitrous oxide mixing
ratio that matches other models (Thompson et al., 2014b),
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Figure 2. The locations of the observations used in this work.

and also gives a nitrous oxide lifetime of 120 years, in good
agreement with Ko et al. (2013) and Prather et al. (2015).
A “base” simulation is then run for 2010–2020 with time-
varying meteorology and prior emissions. Further simula-
tions using fluxes that are perturbed from the prior are used to
construct basis functions, which are described in Sect. 2.3.1.
In order to compare the model simulations to the observa-
tions, the modelled mole fraction is sampled at the latitude,
longitude, altitude, and time of the measurements described
in Sect. 2.1. Monthly mean values are created from these
samples using the same method as for the observations, as
in Sect. 2.1.

2.3 WOMBAT inversion framework

The inversion uses a hierarchical Bayesian inversion frame-
work called WOMBAT (the WOllongong Methodology for
Bayesian Assimilation of Trace-gases), which has previously
been used for estimating carbon dioxide emissions from
satellite data (Zammit-Mangion et al., 2022). The WOMBAT
framework was developed to reduce the problem of model
misspecification caused by issues such as an inaccurate prior
flux field and uncertainty; retrieval biases for satellite data;
and possible spatio-temporal correlations in the measure-
ment error (Zammit-Mangion et al., 2022). WOMBAT tack-
les these problems in the following ways: (i) specifying prior
distributions on the uncertainty in the prior fluxes; (ii) mod-
elling biases in the mole fraction data; (iii) adding a spatio-
temporally correlated component of variability to the mea-
surement error; and (iv) propagating uncertainty on all un-
knowns within a fully Bayesian statistical framework where
inference is made using MCMC. This framework therefore
provides a more statistically rigorous approach than many
previous atmospheric flux inversions. A complete descrip-
tion of the framework for carbon dioxide inversions is given
by Zammit-Mangion et al. (2022). Here, we provide a brief
description of the modified framework used in this work.

This work is set up as for carbon dioxide in Zammit-
Mangion et al. (2022), with four exceptions:

1. No bias in observations and no correlation in model-
measurement discrepancy are considered, as the
monthly data used are less likely to have correlated er-
rors than the higher-frequency data used in Zammit-
Mangion et al. (2022).

2. The fluxes are described by a Gaussian prior distribution
truncated at zero to prevent negative emissions from
land.

3. Fluxes are estimated using a 3-year moving window to
reduce the computational cost of the inversion.

4. The autocorrelation between flux scaling factors is as-
sumed to be zero due to the timing of the prior seasonal
cycle, discussed in Sect. 3.3.2.

2.3.1 The flux process model

The true flux of nitrous oxide (Y1) is modelled as the prior
flux (Y 0

1 ) plus a sum of r flux basis functions (φj ), which
are weighted by scaling factors (αj ). In this study, there are
3036 flux basis functions spanning the 23 TransCom regions
(Fig. S1; see Gurney et al., 2002) and the 132 months of the
study period. The scaling factors (α) are estimated in the in-
version, and can take values of αj ≥−1 (Sect. 2.3.4). The
flux process model may be written as follows:

Y1(s, t)= Y 0
1 (s, t)+

r∑
j=1

φj (s, t)αj + v1(s, t), (1)

where s is the spatial location, t denotes time, and v1 is an
error term. The basis functions are set equal to the prior emis-
sions in their corresponding region and month, and zero else-
where. Consequently, excluding the error term, the true flux
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Table 2. Emissions inventories used for prior emissions in this work.

Source Reference Temporal Years
resolution

Anthropogenic Crippa et al. (2019) Annual 2009–2015 (2016–2020 is 2015 repeating)
Natural soils Saikawa et al. (2013) Monthly Climatology
Oceans Ganesan et al. (2020) Monthly Climatology
Biomass burning Randerson et al. (2017) Monthly Climatology

in a region is modelled as a scaling of the prior flux in that
region. The error term v1 accommodates deviations between
the true flux spatio-temporal patterns and those in the prior
emissions.

2.3.2 The mole fraction process model

Like the flux field, the mole fraction field has a basis func-
tion representation, where each flux basis function has a cor-
responding response function representing the impact of the
prior emissions in a TransCom region and a month on the at-
mospheric mole fraction field. The true mole fraction (Y2) at
space–height–time location (s,h, t) is modelled as the prior
expectation of the mole fraction field derived from the chem-
ical transport model (Y 0

2 ) plus a sum of the r response func-
tions (ψj ) which are weighted by the same scaling factors
(αj ) that appear in Eq. (1). The resulting mole fraction pro-
cess model is as follows:

Y2(s,h, t)= Y 0
2 (s,h, t)+

r∑
j=1

ψj (s,h, t)αj + v2(s,h, t), (2)

where v2 amalgamates spatio-temporal errors from the use
of low-dimensional basis functions and a chemical transport
model that does not simulate transport and chemistry per-
fectly. To construct each response function, we run a per-
turbed model simulation where the prior fluxes are doubled
in that region and month, then subtract the simulated base
mole fraction field from the field simulated under the per-
turbation. The perturbed simulations are run for 2 years, past
which the response function is assumed to be constant in each
grid cell. Running the perturbed simulations is computation-
ally expensive, but can be reduced by running simulations in
parallel and using tagged tracers within GEOS-Chem for the
emissions from the different TransCom regions. These model
runs are required for both an analytical inversion as well as
the hierarchical inversion.

2.3.3 The mole fraction data model

The data used to constrain the nitrous oxide fluxes are the
monthly mean mole fractions described in Sect. 2.1. The
ith measured value (Z2,i) at space–height–time location
(si,hi, ti) differs from the actual true mole fraction of the

atmosphere (Y2) by the measurement error (εi):

Z2,i(s,h, t)= Y2(si,hi, ti)+ εi . (3)

Substituting Eq. (2) into Eq. (3) yields the relationship be-
tween the scaling factors (αj ) and the measurements. The
measurements are grouped by observation station into groups
g = 1, . . .,ng , and collected into vectors Z2,g . There are 45
observation stations in this work, and so ng is 45 in this case.
The model for the gth group can be written in matrix-vector
form as follows:

Z2,g = Y
0
2,g +9gα+ ξg, (4)

where the error term v2 and the measurement error εi have
been amalgamated into an overall model-measurement dis-
crepancy term, ξg .

We assume that the elements of ξg are distributed as inde-
pendent Gaussians with mean zero and variance as follows:
let ξi be the model-measurement discrepancy term for obser-
vation i in group g. We set the variance of ξi , the square root
of which we call the error budget for the observation, to

var(ξi)= γ−1
g (σ 2

i + τ
2
i ), (5)

where γg > 0, σi is the measurement error (Sect. 2.1), and τi
is the model error. The term γg is a station-specific (or equiv-
alently, group g specific) error budget scaling factor which
is estimated in the inversion. We assign the model error τi
as follows. First, we calculate the standard deviation in the
mole fraction of a simulation run with the prior nitrous oxide
emissions in the nine horizontal model grid cells surround-
ing each observation. We then set τi to be the median stan-
dard deviation of the nine grid cells for each month at each
station. The median (over all sites and all months) measure-
ment uncertainty, model uncertainty, and overall error budget
are 0.26, 0.08, and 0.27 ppb, respectively. This overall error
budget is at the lower end of the values seen in other recent
nitrous oxide inversions (Thompson et al., 2019; Tian et al.,
2020; Patra et al., 2022).

The estimated model errors are likely too small, as their
construction considers only spatial variability (Chen and
Prinn, 2006), and ignores other errors, such as those in at-
mospheric transport. One benefit of our approach, is that the
scaling factor γg adjusts the error budgets for the station until
they better match the scale of the errors seen in the inversion.
We reflect this in the prior distribution for γg , which is de-
scribed in the next section.
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Figure 3. Graphical model summarizing the relationship between
the unknown parameters that are optimized in the inversion (dark
grey, bottom row), intermediate variables (white, middle row), and
the atmospheric mole fraction grouped by station (light grey, top
row). The arrows represent the statistical dependence between the
variables.

2.3.4 The parameter model

In Zammit-Mangion et al. (2022), the scaling factors (α)
are assigned a multivariate Gaussian prior. In this work, to
constrain the emissions to be non-negative, we instead use
α ∼ TruncGau(0,6α,Fα) as prior the truncated Gaussian
distribution, where TruncGau(µ,6,F ) denotes a multivari-
ate Gaussian distribution with mean µ and covariance6, and
values of α are constrained to the region F . The precision
matrix Qα ≡6

−1
α is diagonal with the diagonal equal to w,

and the truncation region Fα is set such that α ≥−1. This
constrains the posterior emissions to have a sign equal to that
of the prior emissions at every point in space and time. The
elements of w are assigned independent gamma distributions
with a shape parameter of 4 and rate parameter of 0.7 (i.e.
Ga(4,0.7)). The prior mean of an element of w is thus 5.7,
corresponding to a standard deviation of 0.4 (i.e. a 1σ uncer-
tainty of 40 %) on the scaling factors.

The error budget scaling factors (γg) are given indepen-
dent prior distributions of Ga(2.4,5.4). This distribution has
5 % and 95 % percentiles of 0.1 and 1.0, respectively. This
corresponds to the square of the error budget being between
1 and 10 times its nominal value of (σ 2

i + τ
2
i ), which reflects

the belief that the model error is likely to be underestimated.
The relationship between the variables is summarized in

Fig. 3 and the unknown parameters and their prior distribu-
tions are summarized in Table 3.

2.3.5 Estimation of unknown parameters

The joint posterior distribution over the unknown parameters
α, w, and γ is sampled using the Gibbs sampler described
by Zammit-Mangion et al. (2022), with the step to sample α
modified to use the method of Pakman and Paninski (2014)
to accommodate the truncated Gaussian prior. MCMC, of
which a Gibbs sampler is one form, generates samples from a
target distribution by simulating a Markov chain that has the
target distribution as its equilibrium distribution. MCMC is
beneficial as it can be used to characterize distributions that
are non-Gaussian.

The method of Zammit-Mangion et al. (2022) is too com-
putationally expensive to run over the long time period in this
study. We instead use a moving window approach, which re-
duces the computation time from weeks to days, but is still
much longer than the seconds it would take to solve ana-
lytically. Our method involves estimating the unknown pa-
rameters over a 3-year window (e.g. 2010–2012) and keep-
ing only the parameter values inferred for the middle year
(2011). This allows the first year to account for spin-up ef-
fects and the last year to contribute observations to the middle
year. The next moving window (2011–2013) is then run with
the prior mole fraction field for the start of the first year set to
the posterior estimate from the previous window. For the last
year, 2020, we use the estimates from a shorter 2019–2020
window, so fluxes from this year are more uncertain.

The results from the moving window approach were com-
pared with varying length windows. Since the sensitivity of
observations to a perturbation in the fluxes is nearly constant
a year after the perturbation ceases, there was little difference
between the flux scaling factors inferred by the 3-year mov-
ing window inversion and longer-length windows. Therefore,
we decided to use a 3-year window to minimize computa-
tional expense while maintaining accuracy.

2.4 Analytical inversion framework

To assess the departures from previous work caused by us-
ing a hierarchical inversion, an analytical inversion is also
run for comparison. The observations, error budgets, prior
fluxes, and prior flux uncertainty are set up as for the WOM-
BAT inversion framework (Sect. 2.3), with the exception that
the prior flux distribution is Gaussian rather than a truncated
Gaussian. There is no adjustment of the prior flux uncertainty
or the error budgets in the inversion, and since the analytical
inversion is far less computationally expensive, the inversion
can be run for the whole time period without the moving win-
dow approach (Sect. 2.3.5).

In the analytical inversion, the optimal flux scaling factors
are found using the linear least squares approach described
by Tarantola (2005), which is briefly outlined here. The cen-
tre of the posterior Gaussian (α) is given by

α =6αHt (H6αHt
+6ξ )−1(Z2−Y

0
2), (6)

where 6α is the covariance matrix of α, H is the transport
matrix (which transforms fluxes into modelled mole frac-
tions), 6ξ is the covariance matrix for the observations, Z2
is the observations, and Y 0

2 is the modelled mole fraction us-
ing the prior emissions. The hyper-parameters w and γ are
not solved for in this inversion, they are instead fixed values
of 5.7 and 1, respectively. This results in 6α being diagonal
with the diagonal values equal to 0.42, and6ξ being diagonal
with diagonal values equal to the square of the error budget
(σ 2
i +τ

2
i ). The covariance matrix of the posterior Gaussian is

given by

6̃α = (Ht6−1
ξ H+6−1

α )−1. (7)
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Table 3. Parameters optimized in the inversion, along with their prior distributions. The values used in the measurement-error variance
inflation factors’ prior are given to 1 decimal place.

Parameter Prior

Flux scaling factors’ precisions (w) Gamma(4, 0.7)
Flux scaling factors (α) Gaussian(0,6α), truncated so α ≥−1
Error budget scaling factors (γg) Gamma(2.4, 5.4)

3 Results and discussion

3.1 Validation of the inversion results

The inversion results can be validated by examining how
well the posterior flux reproduces the observed mole frac-
tions used in the inversion, which is presented in the Sup-
plement. The median difference between the observed mole
fraction and the prior GEOS-Chem simulation is 1.494 ppb,
which is reduced to 0.012 and 0.021 ppb for the hierarchi-
cal and analytical posteriors, respectively. In order to further
validate the inversion results, a GEOS-Chem simulation with
the posterior fluxes from the hierarchical inversion was run.
The output from this run was compared to the HIAPER Pole-
to-Pole Observations (HIPPO) aircraft data, which was not
used to optimize the fluxes in the inversion. This compari-
son is further discussed in the Supplement, but the median
difference between the GEOS-Chem simulation and the ob-
servations improves from 1.36 ppb for the prior to 0.17 ppb
for the hierarchical posterior.

3.2 Drivers of the surface nitrous oxide growth rate

To investigate the drivers of the observed surface nitrous ox-
ide growth rate (Fig. 4a), we examine the prior (Fig. 4b)
and posterior (Fig. 4c) estimates. The only difference be-
tween Fig. 4b and c is emissions, demonstrating that emis-
sions are impacting the surface growth rate. To investigate
the role of the climatic variability on growth rate during
the last 5 years, we ran a forward GEOS-Chem simula-
tion using the prior emissions with repeating 2015 meteo-
rology (Fig. 4d), thus removing any interannual meteorolog-
ical variations. The prior emissions in the prior are constant
from 2015 onwards (Table 2), so the only difference between
Fig. 4b and d is the meteorology after 2015. Most of the sur-
face growth rate fluctuations after 2016 disappear and the
surface growth rate is no longer led by the Southern Hemi-
sphere around 2018, demonstrating that climatic variability is
a key driver of the surface growth rate. Previous studies have
suggested that the quasi-biennial oscillation (QBO) is an im-
portant driver of the nitrous oxide growth rate, as it modu-
lates the stratosphere to troposphere mass flux (Ray et al.,
2020; Ruiz et al., 2021).

Figure 4. Atmospheric nitrous oxide surface growth rate for 2011–
2020 in four latitude bands and globally, for (a) the observations,
(b) GEOS-Chem with the prior emissions, (c) GEOS-Chem with
the posterior emissions, and (d) GEOS-Chem with repeating 2015
meteorology and prior emissions (which is the same as (b) except
with constant meteorology after 2015). The growth rates have been
smoothed using a LOESS (locally weighted smoothing) algorithm
with a span of 0.3.

3.3 Nitrous oxide emissions

3.3.1 The global scale

Our posterior mean (and 95 % credible interval) of the global
mean flux of nitrous oxide for 2011–2020 is 17.2 (16.7–
17.7) Tg N yr−1, with 12.0 (11.2–12.8) Tg N yr−1 from the
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land (TransCom regions 0–11 in Fig. S1) and 5.2 (4.5–
5.9) Tg N yr−1 from the oceans (TransCom regions 12–22 in
Fig. S1). These values are within the range of other top-down
estimates during this period (Wells et al., 2018; Thompson
et al., 2019; Tian et al., 2020; Patra et al., 2022), as shown in
Fig. 5a and b. Additionally, the inferred global total emis-
sions show a statistically significant increasing trend over
2011–2020 (p value < 0.05 when fitting a classical linear
model to the posterior means), as shown in Fig. 5c. This is
consistent with previous inversions which have also inferred
increasing global emissions (Thompson et al., 2019; Tian
et al., 2020; Patra et al., 2022), although this is the first paper
to report emissions for 2020 which are likely to be the highest
in 2011–2020, the cause of which is further discussed below.
This emissions increase is driven by both land and ocean sec-
tors, but we further describe below how partitioning to ocean
and land could be influenced by choice of prior.

Imposed on the increasing emissions trend is substantial
interannual variation, as shown in Fig. 5. Previous stud-
ies have found correlation between nitrous oxide fluxes and
the El Niño–Southern Oscillation (ENSO) (Ishijima et al.,
2009; Thompson et al., 2013; Ji et al., 2019; Patra et al.,
2022), with the La Niña phase corresponding to higher ni-
trous oxide emissions. This higher emission has been at-
tributed to increased oceanic upwelling bringing up nutrients,
which increases primary production, removing oxygen from
the subsurface region, which increases denitrification and ni-
trous oxide production (Stramma et al., 2016; Espinoza-Mor-
riberón et al., 2017; Ji et al., 2019). Soil emissions are also
thought to vary with ENSO as a result of changing soil wa-
ter content and temperature (Ishijima et al., 2009; Saikawa
et al., 2013). The ENSO relationship is also seen in our work,
where El Niño events in 2014–2016 and 2018–2019 corre-
spond to lower nitrous oxide emissions, although some of
the peaks and troughs in our emissions do occur in different
years than in previous studies. For example, previous inver-
sions (Thompson et al., 2019; Patra et al., 2022) infer a peak
in emissions during 2013, whereas this work infers a peak in
emissions during 2014. These differences are unlikely to be
caused by the inversion method itself, since performing an
analytical inversion rather than using a hierarchical scheme
in this work produces the same pattern of interannual vari-
ability (Fig. 5). The inversions have slightly different prior
emissions, but Patra et al. (2022) experimented with using
different priors and the interannual variability remained un-
changed. It seems that the most likely explanations for the
disagreement are differences in atmospheric transport be-
tween the models and optimizing emissions for different re-
gions. This type of systematic uncertainty is not estimated in
any of the inversions presented here.

Whilst it is difficult to deduce the cause of the emissions
increase in 2020 from this study, several factors could play a
role. It is likely that natural cycles (e.g. the El Niño–Southern
Oscillation (ENSO) (Ishijima et al., 2009; Thompson et al.,
2013; Ji et al., 2019; Patra et al., 2022)) contribute to the

emissions increase in 2020, alongside the longer-term trend
in increasing emissions, which has been attributed to a non-
linear response of nitrous oxide emissions when nitrogen in-
put is high (Thompson et al., 2019) or an increasing emis-
sions factor due to warming and the redistribution of emis-
sions (Harris et al., 2022).

The impact of the hierarchical inversion can be seen by
comparing it to an analytical inversion within this work, as
shown in Fig. 5. On the global scale, there is very good
agreement in total emissions between the two inversions per-
formed in this work. The only year where the analytical result
falls outside of the 95 % credible interval of the hierarchi-
cal result is 2020. This is because on a global scale, nitrous
oxide emissions are well constrained by the observations so
the inversions give consistent solutions. However, there are
fewer observations to constrain the emissions in 2020 (as
2021 observations were not available). The hierarchical in-
version moves further from the prior because the uncertain-
ties in the inversion can be adjusted if the data suggest it
(Sect. 3.4). The two inversions do not agree on the land and
ocean emissions for 2011–2020 as well as for the global to-
tal emissions over the same time period. The land and ocean
emissions are less constrained by the observations than the
global total emissions, and so differences in the uncertainties
in the inversions (Sect. 3.4) lead to different results. This is
also the case for the zonal emissions which are discussed in
Sect. 3.3.2.

When total emissions are separated into land and ocean
contributions, a wide range of emissions are derived by inver-
sions depending on the prior assumptions as shown in Fig. 5a
and b. We investigated the sensitivity of the inversion results
in the first window (2010–2012) to having the land and ocean
priors rescaled to half and double their original values with
the results shown in Fig. 6. Rescaling the prior for either land
or ocean results in a redistribution of the nitrous oxide emis-
sions between land and ocean, however the global total is
conserved. The redistribution is more marked when rescal-
ing the ocean emissions. This shows that, even in a hierar-
chical inversion, whilst the global total emissions of nitrous
oxide are well constrained by the observations, emissions on
a smaller scale are strongly influenced by the prior values,
in particular for the ocean regions. However, this range in
prior values is not dissimilar to the range used in inversions,
for example Patra et al. (2022) uses prior ocean emissions
of 3.4 Tg N yr−1 whereas one inversion in Thompson et al.
(2019) uses a value of over 7 Tg N yr−1. As a result, different
inversion set ups will likely disagree on a regional scale until
more observations are available to constrain the fluxes.

3.3.2 The zonal scale

We focus on zonal inferred emissions, because we believe the
problems discussed in Sect. 3.3.1 imply that flux inference
on a finer spatial scale is highly challenging with the back-
ground network used here, combined with our low-resolution
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Figure 5. Variation in global annual nitrous oxide emissions over
2011–2020 inferred here and in recent atmospheric inversions
(Thompson et al., 2019; Patra et al., 2022), for (a) the global land,
(b) the global ocean, and (c) the global total emissions. The shading
represents the 95 % credible interval on the mean estimate in this
work.

global model setup. Therefore, we do not analyse individ-
ual TransCom regions but these are provided in the Supple-
ment with the note that they may be unreliable estimates.
The fluxes inferred on a zonal scale are shown in Fig. 7, on
both annual and monthly timescales. Moving from the prior
to the posterior, there has been a redistribution of emissions,
with increased fluxes in the Northern Hemisphere between
0 and 30◦ N and reduced fluxes beyond 30◦ N and 30◦ S.
Most of the increasing trend in global nitrous oxide emis-
sions comes from the Northern Hemisphere between 0 and
30◦ N, although all zonal bands contribute to the interannual
variability.

The impact of the hierarchical inversion can be seen by
comparing it to an analytical inversion within this work, as
shown in Fig. 7. In contrast to the well constrained global to-
tal, the inversions do infer different zonal totals, with the an-
alytical inversion having a smaller flux and a smaller increas-

Figure 6. The effect of rescaling the prior emissions over (a) land
and (b) ocean on the inferred nitrous oxide flux in the first window
of the inversion, inferring fluxes for the year 2011. Orange bars are
the inferred fluxes when the prior was halved, blue bars are with the
original prior, and green bars when the prior was doubled. The error
bars represent the 95 % credible intervals on the estimates.

ing trend in the Northern Hemisphere between 0 and 30◦ N.
This difference between the inversions in this zonal band is
mainly caused by differences in the North African and East
Pacific Tropical regions (as shown in the Supplement), which
can move further from the prior in the hierarchical inversion
(Sect. 3.4).

Whilst it is difficult to directly compare our results to pre-
vious inversions which optimize fluxes for different regions
and scales, the results are broadly similar. Previous atmo-
spheric inversions also redistribute emissions from the extra-
tropics in the prior to the tropics (Thompson et al., 2019;
Patra et al., 2022), and assign an increasing trend in emis-
sions to tropical regions, in particular South and East of
Asia, Africa, tropical America, and central South America
(Thompson et al., 2019; Patra et al., 2022). The main dif-
ference in this work is that no trend is derived for Asia and
the Americas. This is likely a result of the hierarchical in-
version which allows some regions’ emissions, particularly
North Africa, to be further from the prior if the data dic-
tate it (Sect. 3.4), and hence have a larger emissions trend.
In non-hierarchical inversions, it appears that the increase in
emissions is spread more evenly between regions, perhaps
because the prior uncertainty is more homogeneous.

Another notable difference from the prior seen in Fig. 7
is the seasonal cycle in the Northern Hemisphere between
30 and 90◦ N, which peaks as winter ends in the posterior
(typically in March), rather than during summer in the prior.
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Figure 7. Inferred nitrous oxide emissions for 2011–2020 in four zonal bands: (a) Northern Hemisphere (30–90◦ N), (b) Northern Hemi-
sphere (0–30◦ N), (c) Southern Hemisphere (30◦ S–0◦), and (d) Southern Hemisphere (30–90◦ S). Plots on the left-hand side show annually
averaged emissions and on the right-hand side show monthly emissions, where orange is the hierarchical inversion posterior, green is the an-
alytical inversion posterior, and blue is the prior, with the shading showing the 95 % credible intervals of the hierarchical inversion posterior.

This seasonal cycle change has been inferred by other in-
versions (e.g. Thompson et al., 2014a; Nevison et al., 2018;
Wells et al., 2018). According to our inversion, the land in the
Northern Hemisphere causes this reversal. The prior anthro-
pogenic emissions only vary on an annual timescale, so the
land seasonal cycle predominantly comes from natural soil
emissions (Saikawa et al., 2013), which does not account for
processes in this latitude band such as freeze–thaw cycles or
fertilizer application (Wagner-Riddle et al., 2017; Nevison
et al., 2018).

3.4 The use of a hierarchical inversion

We used a hierarchical inversion scheme to characterize the
uncertainties more objectively compared to previous studies.
This was done by including flux scaling factor precisions
and error budget scaling factors (Sect. 2.3). The mean val-
ues of these hyper-parameters over all windows inferred by
the inversion, transformed into standard deviation space, are
shown in Fig. 8a and b. While only a mean is presented here,
the hyper-parameter values are relatively consistent between
the years, although this does vary between different regions
and stations (see Supplement). The shading in Fig. 8a shows
the flux scaling factor standard deviation for each TransCom
region. The median value for the flux scaling factor standard
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deviation is 0.5 (50 % prior uncertainty), but it is highly de-
pendent on the region. Some regions have a much larger scal-
ing factor standard deviation which means the data provide a
strong enough constraint to move these regions far from the
prior value. The median value is very similar to the values
commonly imposed through “expert judgement” (0.5–1.0),
but the hierarchical inversion scheme infers an uncertainty
above 1.0 for every year in two key regions (Eurasia Tem-
perate and North Africa). This implies that imposing a strict
prior uncertainty of 100 % (or similar) in these regions may
overly constrain the prior.

The second type of hyper-parameter shown in Fig. 8b are
the error budget scaling factors for each measurement sta-
tion. This hyper-parameter scales the error budget which in-
cludes both a measurement error and model error (Sect. 2.3).
Our calculation of the error budget does not include many
other types of error, such as atmospheric transport or chem-
istry, which the error budget scaling factors can compensate
for. The median value of the error budget scaling factor (over
all sites and all years) is 1.06, which corresponds to a value
of 0.97 in Fig. 8b and a 3 % reduction in the error budget,
but the values vary substantially by station. This means the
error budget in this work is smaller than a non-hierarchical
inversion would have imposed. Therefore, a non-hierarchical
inversion for the same number of data points and uncertain
parameters would be less data-constrained than our frame-
work.

The variation in the error budget scaling factor between
different stations is somewhat counter-intuitive, with extra-
tropical stations in the Southern Hemisphere having the
largest values, despite small emissions in this area. In this
area, the inversion does not match the seasonal cycle or the
interannual variation in the observations as well as other ar-
eas (shown in the Supplement). One of the most likely causes
of the large error budget scaling factors and observational
mismatch is an inadequate prior without enough flexibility
to change as a result of solving on the scale of TransCom
regions. The TransCom regions are particularly restrictive
in the Antarctic circle (where the largest error budget scal-
ing factors are found), as the TransCom region for Antarc-
tica also includes Greenland and the Mediterranean Sea (see
Fig. S1), limiting the potential for the fluxes in this area to ad-
just. Another factor could be that the extra-tropical stations
in the Southern Hemisphere generally have lower error bud-
gets before the scaling factor is applied, because of the lower
spatial and temporal variability in their mole fractions. Addi-
tionally, because of the low emissions in this area, the varia-
tions in atmospheric nitrous oxide mole fractions are mainly
driven by atmospheric transport, which the inversion cannot
adjust.

The analytical inversion does not include these hyper-
parameters and hence, the uncertainties in the inversion are
not as reliable as in the hierarchical inversion. Therefore, the
analytical inversion presented in this work should not be in-

Figure 8. The inferred hyper-parameters transformed into a stan-
dard deviation scale. The shading in (a) represents the mean un-
certainty in the prior emissions (1/

√
w) which is solved for each

TransCom region on an annual basis. The coloured dots in (b) rep-
resent the mean error budget scaling factor (1/

√
γ ) which is solved

for each measurement station.

terpreted as an alternative solution, but rather as a way to
examine departures from previous work.

4 Conclusions

We carried out the first hierarchical inversion to solve for
global nitrous oxide emissions. We find that global emis-
sions have increased between 2011 and 2020, with substan-
tial interannual variability. Emissions derived for 2020 were
the highest in this period, 19.5 (95 % credible interval: 18.9–
20.1) Tg N yr−1 due to an increase of emissions in the tropics.
On annual timescales, our estimated global emissions differ
from other studies, likely due to differences in atmospheric
chemical transport models and optimizing emissions for dif-
ferent regions, rather than the inversion method. We show
that the recent atmospheric surface growth rate fluctuations
are likely to be driven by both emissions and interannual vari-
ability in transport.

At the zonal scale, we find several issues with the bottom-
up emission estimates used as a prior. The posterior seasonal
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cycle in the extra-tropical Northern Hemisphere is out of
phase with the prior. This may be because the agricultural
soil emissions in the prior are only on an annual resolution,
and/or because natural soil emissions do not include impor-
tant processes such as freeze–thaw cycles. Additionally, there
has been a substantial redistribution of emissions from the
extra-tropics in the prior to the tropics in the Northern Hemi-
sphere in the posterior. This is the zonal band where most of
the globally increasing trend comes from over the time pe-
riod studied.

By adapting and extending the hierarchical inversion
framework of Zammit-Mangion et al. (2022), we have shown
that inversions for nitrous oxide can be performed that do not
rely on rigid assumptions regarding error budgets or the un-
certainty of the fluxes. Our uncertainties are estimated by the
inversion and are generally smaller than those that would be
used in a non-hierarchical inversion for the same number of
data points and uncertain parameters, and therefore our inver-
sion is more data-constrained. Additionally, our uncertainties
vary greatly across different stations and regions, which is
not considered in previous non-hierarchical studies. Two in-
novations in this work over Zammit-Mangion et al. (2022)
are the moving window technique, which allows for more
efficient computation of fluxes over very long time periods
(∼ 10 years or longer), and the incorporation of a truncated
Gaussian prior to impose sign constraints on the emissions.
The method presented here serves as a framework that can
be extended to higher-resolution models (potentially allow-
ing more reliable regional emissions inference) and larger
datasets.

Code and data availability. The code and data for this
work can be found at https://doi.org/10.17605/OSF.IO/SN539
(Stell, 2022). The GEOS-Chem model is available to be
downloaded at http://www.geos-chem.org (last access:
28 May 2021; The International GEOS-Chem User Com-
munity, 2021, https://doi.org/10.5281/zenodo.4618180). The
atmospheric observations can be obtained from the data providers:
https://www.esrl.noaa.gov/gmd/ (last access: 28 May 2021; Dlugo-
kencky et al., 2021, https://doi.org/10.7289/V5CN725S; Sweeney
et al., 2021, https://doi.org/10.7289/V5N58JMF) for NOAA and
https://agage.mit.edu (last access: 28 May 2021; Prinn et al., 2021,
https://doi.org/10.15485/1781803) for AGAGE.
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